33 research outputs found

    Whole-genome sequencing-based antimicrobial resistance characterization and phylogenomic investigation of 19 multidrug-resistant and extended-spectrum beta-lactamase-positive Escherichia coli strains collected from hospital patients in Benin in 2019

    Get PDF
    The increasing worldwide prevalence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli constitutes a serious threat to global public health. Surgical site infections are associated with high morbidity and mortality rates in developing countries, fueled by the limited availability of effective antibiotics. We used whole-genome sequencing (WGS) to evaluate antimicrobial resistance and the phylogenomic relationships of 19 ESBL-positive E. coli isolates collected from surgical site infections in patients across public hospitals in Benin in 2019. Isolates were identified by MALDI-TOF mass spectrometry and phenotypically tested for susceptibility to 16 antibiotics. Core-genome multi-locus sequence typing and single-nucleotide polymorphism-based phylogenomic methods were used to investigate the relatedness between samples. The broader phylogenetic context was characterized through the inclusion of publicly available genome data. Among the 19 isolates, 13 different sequence types (STs) were observed, including ST131 (n = 2), ST38 (n = 2), ST410 (n = 2), ST405 (n = 2), ST617 (n = 2), and ST1193 (n = 2). The blaCTX-M-15 gene encoding ESBL resistance was found in 15 isolates (78.9%), as well as other genes associated with ESBL, such as blaOXA-1 (n = 14) and blaTEM-1 (n = 9). Additionally, we frequently observed genes encoding resistance against aminoglycosides [aac-(6')-Ib-cr, n = 14], quinolones (qnrS1, n = 4), tetracyclines [tet(B), n = 14], sulfonamides (sul2, n = 14), and trimethoprim (dfrA17, n = 13). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA associated with resistance to fluoroquinolones were also detected in multiple isolates. Although the phylogenomic investigation did not reveal evidence of hospital-acquired transmissions, we observed two very similar strains collected from patients in different hospitals. By characterizing a set of multidrug-resistant isolates collected from a largely unexplored environment, this study highlights the added value for WGS as an effective early warning system for emerging pathogens and antimicrobial resistance.The ARES (Académie de la Recherche pour l’Enseignement Supérieur), Belgium.http://www.frontiersin.org/Microbiologyam2022Genetic

    Whole-Genome Sequencing-Based Screening of MRSA in Patients and Healthcare Workers in Public Hospitals in Benin.

    No full text
    Methicillin-resistant (MRSA) constitutes a serious public health concern, with a considerable impact on patients’ health, and substantial healthcare costs. In this study, patients and healthcare workers (HCWs) from six public hospitals in Benin were screened for MRSA. Strains were identified as MRSA using conventional microbiological methods in Benin, and confirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in Belgium. Whole-genome sequencing (WGS) was used on the confirmed MRSA isolates, to characterize their genomic content and study their relatedness. Amongst the 305 isolates (304 wound swabs and 61 nasal swabs) that were collected from patients and HCWs, we detected 32 and 15 cases of MRSA, respectively. From this collection, 27 high-quality WGS datasets were obtained, which carried numerous genes and mutations associated with antimicrobial resistance. The gene was detected in all the sequenced isolates. These isolates were assigned to five sequence types (STs), with ST8 (55.56%, n = 15/27), ST152 (18.52%, n = 5/27), and ST121 (18.52%, n = 5/27) being the most common. These 27 isolates carried multiple virulence genes, including the genes encoding the Panton-Valentine leukocidin toxin (48.15%, n = 13/27), and the gene (29.63%, n = 8/27), associated with toxic shock syndrome. This study highlights the need to implement a multimodal strategy for reducing the risk of the cross-transmission of MRSA in&nbsp;hospitals.</p

    Whole-Genome Sequencing-Based Antimicrobial Resistance Characterization and Phylogenomic Investigation of 19 Multidrug-Resistant and Extended-Spectrum Beta-Lactamase-Positive Escherichia coli Strains Collected From Hospital Patients in Benin in 2019.

    No full text
    The increasing worldwide prevalence of extended-spectrum beta-lactamase (ESBL) producing constitutes a serious threat to global public health. Surgical site infections are associated with high morbidity and mortality rates in developing countries, fueled by the limited availability of effective antibiotics. We used whole-genome sequencing (WGS) to evaluate antimicrobial resistance and the phylogenomic relationships of 19 ESBL-positive isolates collected from surgical site infections in patients across public hospitals in Benin in 2019. Isolates were identified by MALDI-TOF mass spectrometry and phenotypically tested for susceptibility to 16 antibiotics. Core-genome multi-locus sequence typing and single-nucleotide polymorphism-based phylogenomic methods were used to investigate the relatedness between samples. The broader phylogenetic context was characterized through the inclusion of publicly available genome data. Among the 19 isolates, 13 different sequence types (STs) were observed, including ST131 ( = 2), ST38 ( = 2), ST410 ( = 2), ST405 ( = 2), ST617 ( = 2), and ST1193 ( = 2). The gene encoding ESBL resistance was found in 15 isolates (78.9%), as well as other genes associated with ESBL, such as ( = 14) and ( = 9). Additionally, we frequently observed genes encoding resistance against aminoglycosides [,  = 14], quinolones ( ,  = 4), tetracyclines [(),  = 14], sulfonamides (,  = 14), and trimethoprim (,  = 13). Nonsynonymous chromosomal mutations in the housekeeping genes and associated with resistance to fluoroquinolones were also detected in multiple isolates. Although the phylogenomic investigation did not reveal evidence of hospital-acquired transmissions, we observed two very similar strains collected from patients in different hospitals. By characterizing a set of multidrug-resistant isolates collected from a largely unexplored environment, this study highlights the added value for WGS as an effective early warning system for emerging pathogens and antimicrobial&nbsp;resistance.</p

    First detection of a plasmid-encoded New-Delhi metallo-beta-lactamase-1 (NDM-1) producing Acinetobacter baumannii using whole genome sequencing, isolated in a clinical setting in Benin.

    No full text
    BACKGROUND: Carbapenem-resistant Acinetobacter baumannii is considered a top priority pathogen by the World Health Organization for combatting increasing antibiotic resistance and development of new drugs. Since it was originally reported in Klebsiella pneumoniae in 2009, the quick spread of the bla gene encoding a New-Delhi metallo-beta-lactamase-1 (NDM-1) is increasingly recognized as a serious threat. This gene is usually carried by large plasmids and has already been documented in diverse bacterial species, including A. baumannii. Here, we report the first detection of a NDM-1-producing A. baumannii strain isolated in&nbsp;Benin. CASE PRESENTATION: A 31-year-old woman was admitted to a surgical unit with a diagnosis of post-cesarean hematoma. An extensively-drug resistant A. baumannii strain solely susceptible to amikacin, colistin and ciprofloxacin, and resistant to several other antibiotics including ceftazidime, imipenem, meropenem, gentamicin, tobramycin, ceftazidime/avibactam, and sulfamethoxazole-trimethoprim, was isolated from the wound. Production of NDM-1 was demonstrated by immunochromatographic testing. Whole genome sequencing of the isolate confirmed the presence of bla, but also antibiotic resistance genes against multiple beta-lactamases and other classes of antibiotics, in addition to several virulence genes. Moreover, the bla gene was found to be present in a Tn125 transposon integrated on a&nbsp;plasmid. CONCLUSIONS: The discovery of this extensively-drug resistant A. baumannii strain carrying bla in Benin is worrying, especially because of its high potential risk of horizontal gene transfer due to being integrated into a transposon located on a plasmid. Strict control and prevention measures should be taken, once NDM-1 positive A. baumannii has been identified to prevent transfer of this resistance gene to other Enterobacterales. Capacity building is required by governmental agencies to provide suitable antibiotic treatment options and strategies, in combination with strengthening laboratory services for detection and surveillance of this&nbsp;pathogen.</p

    Whole-Genome Sequencing-Based Screening of MRSA in Patients and Healthcare Workers in Public Hospitals in Benin

    No full text
    Methicillin-resistant Staphylococcus aureus (MRSA) constitutes a serious public health concern, with a considerable impact on patients’ health, and substantial healthcare costs. In this study, patients and healthcare workers (HCWs) from six public hospitals in Benin were screened for MRSA. Strains were identified as MRSA using conventional microbiological methods in Benin, and confirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in Belgium. Whole-genome sequencing (WGS) was used on the confirmed MRSA isolates, to characterize their genomic content and study their relatedness. Amongst the 305 isolates (304 wound swabs and 61 nasal swabs) that were collected from patients and HCWs, we detected 32 and 15 cases of MRSA, respectively. From this collection, 27 high-quality WGS datasets were obtained, which carried numerous genes and mutations associated with antimicrobial resistance. The mecA gene was detected in all the sequenced isolates. These isolates were assigned to five sequence types (STs), with ST8 (55.56%, n = 15/27), ST152 (18.52%, n = 5/27), and ST121 (18.52%, n = 5/27) being the most common. These 27 isolates carried multiple virulence genes, including the genes encoding the Panton–Valentine leukocidin toxin (48.15%, n = 13/27), and the tst gene (29.63%, n = 8/27), associated with toxic shock syndrome. This study highlights the need to implement a multimodal strategy for reducing the risk of the cross-transmission of MRSA in hospitals

    Whole-Genome Sequencing-Based Antimicrobial Resistance Characterization and Phylogenomic Investigation of 19 Multidrug-Resistant and Extended-Spectrum Beta-Lactamase-Positive Escherichia coli Strains Collected From Hospital Patients in Benin in 2019

    Get PDF
    The increasing worldwide prevalence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli constitutes a serious threat to global public health. Surgical site infections are associated with high morbidity and mortality rates in developing countries, fueled by the limited availability of effective antibiotics. We!used whole-genome sequencing (WGS) to evaluate antimicrobial resistance and the phylogenomic relationships of 19 ESBL-positive E. coli isolates collected from surgical site infections in patients across public hospitals in Benin in 2019. Isolates were identi"ed by MALDI-TOF mass spectrometry and phenotypically tested for susceptibility to 16 antibiotics. Core-genome multi-locus sequence typing and single-nucleotide polymorphism-based phylogenomic methods were used to investigate the relatedness between samples. The broader phylogenetic context was characterized through the inclusion of publicly available genome data. Among the 19 isolates, 13 different sequence types (STs) were observed, including ST131 (n = 2), ST38 (n = 2), ST410 (n = 2), ST405 (n = 2), ST617 (n = 2), and ST1193 (n = 2). The blaCTX-M-15 gene encoding ESBL resistance was found in 15 isolates (78.9%), as well as other genes associated with ESBL, such as blaOXA-1 (n = 14) and blaTEM-1 (n = 9). Additionally, we!frequently observed genes encoding resistance against aminoglycosides [aac-(6')-Ib-cr, n = 14], quinolones (qnrS1, n = 4), tetracyclines [tet(B), n = 14], sulfonamides (sul2, n = 14), and trimethoprim (dfrA17, n = 13). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA associated with resistance to #uoroquinolones were also detected in multiple isolates. Although the phylogenomic investigation did not reveal evidence of hospital-acquired transmissions, we!observed two very similar strains collected from patients in different hospitals. By characterizing a set of multidrug-resistant isolates collected from a largely unexplored environment, this study highlights the added value for WGS as an effective early warning system for emerging pathogens and antimicrobial resistance

    Molecular and clinical investigation of Zika virus outbreak in New Caledonia

    No full text
    &lt;p&gt;Introduction: Zika virus (ZIKV) is an emerging mosquito-borne pathogen transmitted to humans byinfected Aedes mosquitoes. In 2016, WHO declared ZIKV as a Public Health Emergency ofInternational Concern regarding clusters of microcephaly cases and neurological disorders probablylinked to ZIKV infection. Before that, ZIKV emerged in the Pacific for the first time in 2007. In 2013French Polynesia (FP) experienced a large Zika outbreak. ZIKV then spread throughout the Pacificduring the following two years and reached Brazil where a major outbreak is occurring. In NewCaledonia (NC), a ZIKV outbreak occurred in 2014 and 2015 with more than 1500 cases of ZIKVconfirmed by RT-PCR.Method: However, the diagnostic of ZIKV cases was challenging due to low sensitivity of RT-PCRtechnics on serum samples. We thus explored the detection of ZIKV in non-invasive samples. Wealso investigated the molecular evolution of ZIKV in NC compared to other regions in the world.Results/Conclusion: Here, we highlighted a better sensitivity of ZIKV detection by RT-PCR in urinesamples with longer and higher presence of ZIKV RNA compared to serum. Phylogenetic analysisconfirmed the epidemiological link between FP and NC ZIKV strains. Finally results of clinicalinvestigations regarding probable neurological disorders linked to ZIKV infection will be presented.&lt;/p&gt;</p
    corecore